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Roadmap

I. A simple picture of the Anderson transition.
II. The Urbach problem: where do exponential 

band tails come from?
III. Non-locality of quantum mechanics in the solid 

state -- with disorder.
IV. The coupling to phonons.
Implement this for real materials using credible 

models.



Crystalline Si (diamond) Amorphous Silicon

Translational periodicity                   Short-range order, no L.R.O.
Bloch states                                       k not a “good” quantum number

Q. How does disorder in atomic coordinates affect the
                                   electron states?



Models of disorder

Anderson Model (1958)
H = ∑I |I><I| EI + ∑IJ |I><J| SIJ

EI are random, “diagonal”
disorder. Fact -- enough 
variation in EI -- all states
localized! 

Topological (bond length/angle) disorder
H = ∑I |I><I| EI + ∑IJ |I><J| SIJ

SIJ: Computed from
realistic model. 

Anderson model: disorder uncorrelated site-to-site; our case – 
spatial correlations induce correlations in matrix elements. 



Anderson model

Left: A localized eigenstate in 1D (Kramer/MacKinnon)
 Right: 3D critical eigenstate (15.6M sites; Roemer)



I. Approach for a real material

• Compute electronic states around the gap 
for big and realistic models of a-Si1, and 
study the nature of the localized (midgap) 
to extended (in the band) transition. [4096 
atoms model, periodic BC]

• Employ unholy amalgam of tight-binding, 
maximum entropy, shift and invert Lanczos 
techniques.

1B. Djordjevic, M. F. Thorpe and F. Wooten, PRB 52 5685 (1995)



Evolution of electron states
in a-Si.  J-J Dong, DAD PRL 80 1928 1998
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Interpretation 
• Structural irregularities or defects “beyond the mean” 

exist.
• If “bad enough” these induce localized wave functions.
• If two such defects are spatially near and have similar 

energies, system eigenstates will be mixtures. “States b 
and c” [clue: Symmetric and anti-symmetric linear 
combinations of b and c yield single “islands”]

• If many such resonant defects overlap, one has 
“electronic connectivity”. This is Mott’s mobility edge.

“Resonant Cluster Proliferation” Model



Universality of island 
proliferation 

Anderson model,
W/V=16.5 (all states
localized). 

Vitreous silica vibrations
note white centers

FCC lattice with force
constants selected
from uniform dist of width
(W/V=2)

Vibrational evecs
for 10K atom model
of a-Si.



“Universality” and structure of 
eigenstates

• Disorder comes in many shapes and sizes. 
• electrons, Anderson models (diagonal and off-diagonal);  
“real” disorder from topologically disordered network.

• vibrations “Substitutional”;  Force constant disorder on a 
FCC lattice;  Topological disorder (a-silica) with long-
range (Coulomb) interactions; (a-Si)10,000 atom

   The qualitative nature of the localized-
extended transition is similar for all these 
systems.

  
Ludlam, Taraskin, Elliott, DAD – JPCM 17 L321 (2005).



Do the correlations in matrix 
elements matter?

• The Anderson model gets all the qualitative 
features right: islands, resonant mixing etc. 
around spectral gaps.

• But not the fine but important details 
around the band edges.

Yes – the correlations matter.



II. The Urbach tail problem
• Urbach1 noted exponential (not Gaussian) tails in optical 

absorption for impure crystals in 1953:

 ω: photon frequency, ω0 and E0 fitting parameters

• It is ubiquitous (particularly in systems with disorder). 
• Venerable problem – various ideas: Halperin-Lax, Morrell 

Cohen et al, Dow-Redfield... Very different models.
• This has been carefully studied in amorphous Si. 

Exponential tails measured separately for each band edge2.

1F. Urbach, PR 92 1324 (1953)
2S. Aljishi et al., PRL 64 2811 (1990)  



Preliminary: Defective xtal and
ion-bombarded diamond Si

• Experiment1: ion-damaged 
diamond exhibits an 
exponential tail.

• Simulation2: SIESTA relaxed 
di-vacancy in 512-atom cell 
forms exponential tail.

• Relaxing di-vacancy yields 
strain field involving many 
atoms. The beginning of the 
Urbach tail?

1S. Sundari, Nuc. Inst. Meth. B 215 157 (2004)
2Y. Pan, F. Inam, M. Zhang, DAD, PRL 100 206403 (2008)



Density of states: large 
amorphous Si model

• Model: Barkema and Mousseau WWW-
type: 100,000 atoms. Excellent RDF, 
fourfold, tetrahedral with little strain.

• Hamiltonian: Kwon et al. orthogonal tight-
binding model, maximum entropy tricks to 
compute the DOS (ask me…)

G. Barkema and N Mousseau, PRB 62 4985 (2000)
DAD and O. F. Sankey, PRL 70 3631 (1993); DAD EPJB 68 1 (2009); K. Bandypoadhyay et al, PRE 71 057701 (2005)
I. Kwon et al, PRB 49 7242 (1994)



Density of states: reconstruction 
from moments

Maxent form:
find Λi to match moments

E. T. Jaynes, Probability Theory: The Logic of Science, CUP (2003); DAD and O. F. Sankey, PRL  70 3631 (1993).



Result: exponential tails in a-Si

EU=200 meV (valence) 
EU=96 meV (conduction)

εf



Discussion

• The models include whatever structures “cause” 
the exponential tails. 

o  conduction tail:  due to 1-D filaments of long 
bonds.

o  valence tail: due to 3-D clusters of short bonds 
‘nucleated’ by a particularly short bond.

Y. Pan, F. Inam, M. Zhang and DAD, PRL 100 206403 (2008).



Tail states 
Bondlength decomposition as function of energy

Messages: 1) valence tail from short;  2) conduction from long; 
3) Defects add ‘noise’ – but the pattern is evident nevertheless;  4)
Note the symmetry in B(E) about Ef, especially for M1.

M1, M2 – WWW (DTW)
M3-MD (Feldman)
M4-ART (Mousseau)
M5-WWW+xtal
M6,M7 – RMC (allowing
defects)
Phys. Rev. B 58 15624 (1998)
J. Non. Cryst. Sol. 354 3480 (2008)

Ef



Blobs and filaments: valence 
states

Other blobs and filaments: Lyman
a emisson from a giant galaxy 
‘string’. Paul Francis, ANU, 
2004

Valence tail: connected blobs and filaments

Blobs and filaments in solids, not space:
J. Dong & DAD PRL 80 1928 (1998)
J. Ludlam, S. R. Elliott, S. N. Taraskin &
DAD  JPCM 17 L321 (2005)



a-Silica 

• Silica tails: small θO-Si-O 
(valence), large θSi-O-Si 
(conduction). 

F. Inam, J. Lewis, DAD PSS(a) 207 599 (2010)



Conclusion: Urbach tails
• Shorter bond ‘nuclei’ create clusters of connected short bonds; local 

densification. Long bonds, wispy filaments. 
• Short bonds: valence tail, long bonds: conduction tail.
• Our models are too small to accurately compute fractal dimension D 

but we surely have:
  Filaments:   D near 1 on the conduction side
  Clusters:  D significantly higher than for the valence side
 We link such electronic information to the connectivity/structure of 

the network. D is unknown for a real material – and varies 
asymmetrically about Ef.. [D~1.3 for Anderson model.]

• Some indication of greater generality: silica
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III. Locality of QM in disordered 
solid state

Even for disordered system: almost all eigenstates fill space. Looks like 
the force on atom at R requires information from everywhere!

                           [Here, yn is a Kohn-Sham orbital.]

Can perturbing the solid 1m away from R really change the force on at 
R???  (No! Boys, Kohn, Vanderbilt, Daw...)



Density matrix: gauge of 
electronic nonlocality

W. Kohn: Density matrix ρ is localized by destructive wave-mechanical 
interference.                  Principle of Nearsightedness

One might suppose that destructive wave-mechanical interference 
should be influenced by structural disorder. Is it?

The decay of the density matrix is fundamental attribute of the material 
(and structure).

eigenstates



Example: Aluminum

Metal: power law decay. Free electron gas gives similar DM 
to DFT! Gibbs’ ringing* from cutoff at Fermi surface.

ζ=kf|x-x’| 
n: density of electron gas

*Published by Henry Wilbraham (1848), On a certain periodic function, The Cambridge and Dublin Mathematical Journal 3: 198–201, 
Trinity College, when 22 years old, 50 years before Gibbs!

Kohn-Sham

S. N. Taraskin et al., PRB 66 233101 (2002)



Decay of density matrix in 
insulators: analytic approach
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Start with centrosymmetric n.n. tight-binding Hamiltonian
Two orbitals per
site, bonding and
antibonding, SC
lattice.

Density matrix is integral over Brillouin zone:

S(k) is structure factor, A(k) depends on S and tight
binding parameters. 



D.M. asymptotics (cont’d)
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S is a (known) sum, depending on dimensionality D=1,2,3

Sum the series, use Stirling approximation, in 3D get (for
example):

2d, 3d: S. Taraskin, DAD, Elliott PRL 88 196405 (2002); also 1d: L. He and D. Vanderbilt, PRL 86, 5341 (2001).



Realistic calculations (c-Si and a-
Si): DFT

The same exponential decay, crystal or amorphous!

X. Zhang and DAD, PRB 63 233109 (2001).



Wannier functions

• Wannier functions: unitary transformations of 
eigenstates localized in real space.

• Not unique, but Vanderbilt showed how to 
compute maximally-localized Wannier functions1.

• Long range decay of these is similar for c-Si and 
a-Si, and similar to decay of density matrix.

• We compute with an O(N) projection method, 
results much like MLWFs.

1D. Vanderbilt and coworkers “Maximally-localized WF”, N. Marzari et al, RMP 84 1419 (2012)



Wannier functions for disordered 
systems

Diamond a-SiDAD Eur. Phys. J B 68 1 (2009)



Conclusion: Locality

We quantify Kohn’s Principle:
(1)Analytically for two-band insulator
(2)By direct calculation of r with Kohn-Sham 

orbitals for metals, crystalline and 
amorphous semiconductors. Also Wannier 
functions from projection.

(3)Topological disorder makes little 
qualitative difference, at least for a-Si (and 
SiO2). 30



IV. But what of Localized 
Electrons + Phonons

• The electron-phonon coupling gauges how the 
electron energies/states change with atomic 
deformation.

• Phonon effects near the Fermi level: key to 
transport, device applications, theory of 
localization.

• We begin with a simple simulation….
 



Thermal fluctuations of the 
Kohn-Sham eigenvalues

States near gap fluctuate by tenths of eV >> kT !

Τ=300Κ, 216
atoms, G point



Sensitivity of electron energy to 
particular phonon

• Hellmann-Feynman theorem and harmonic 
approximation with classical lattice 
dynamics leads easily to fluctuations in 
electron energy eigenvalue <δλ2>:

We call Ξ the electron-phonon coupling



E-P coupling: a-Si, a-Se
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Si

Se

Ξn(ω) = ∑α<ψn|∂H/∂Rα|ψn> χα(ω)

Couple electron n (energy E) and phonon ω
R. Atta-Fynn, P. Biswas, DAD Electron-phonon 
coupling is large for localized states, PRB 69 245204 
(2004)



Correlation between localization 
and thermal fluctuation from MD

Localization (T=0 property)

<δλ2> 

Fits analytic result for low T

150K

300K

500K

700K

(T>0 property)



Interpretation

1. Large e-p coupling for localized states near 
the gap. Localization amplifies e-p coupling.

2. For localized states, simple algebra1 leads 
to the conclusion that:
 a) Ξn(ω)2 [for eigenvalue n] ~ IPR [n]
 b) <δλ2> ∼ IPR
IPR = inverse participation ration; measure of localization

1Atta-Fynn, Biswas and DAD, PRB 69 254204 (2004)
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