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Roadmap

I. A simple picture of the Anderson transition.

II. The Urbach problem: where do exponential
band tails come from?

III. Non-locality of quantum mechanics in the solid
state -- with disorder.

IV. The coupling to phonons.

Implement this for real materials using credible
models.



Q. How does disorder 1in atomic coordinates affect the
electron states?

Crystalline S1 (diamond) Amorphous Silicon

Translatlonal periodicity Short -range order, no L R.O.
Bloch states k not a “good” quantum number



Models of disorder

E; are random, “diagonal”

Anderson Model (1958) disorder. Fact -- enough
H=), [><I| E, + > [I><J| Sy variation in E; -- all states
localized!

Topological (bond length/angle) disorder S;;: Computed from
H=>|><I|E;+ >y [I><]| S realistic model.

Anderson model: disorder uncorrelated site-to-site; our case —
spatial correlations induce correlations 1n matrix elements.



Anderson model
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Left: A localized eigenstate in 1D (Kramer/MacKinnon)
Right: 3D critical eigenstate (15.6M sites; Roemer)



I. Approach for a real material

« Compute electronic states around the gap
for big and realistic models of a-Si', and
study the nature of the localized (midgap)
to extended (in the band) transition. [4096

atoms model, periodic BC]

 Employ unholy amalgam of tight-binding,
maximum entropy, shift and invert Lanczos
techniques.

B. Djordjevic, M. F. Thorpe and F. Wooten, PRB 52 5685 (1995)
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Interpretation

Structural irregularities or defects “beyond the mean”
exist.

If “bad enough” these induce localized wave functions.

If two such defects are spatially near and have similar
energies, system eigenstates will be mixtures. “States b
and ¢” [clue: Symmetric and anti-symmetric linear
combinations of b and ¢ yield single “islands™]

If many such resonant defects overlap, one has
“electronic connectivity”. This is Mott’s mobility edge.

“Resonant Cluster Proliferation” Model



Universality of 1sland
proliferation

Vitreous silica vibrations

Anderson model, note white centers

W/V=16.5 (all states

localized). - .

Vibrational evecs
for 10K atom model

FCC lattice with force __, of a.Si

constants selected
from uniform dist of width
(W/V=2)




“Universality” and structure of
eigenstates

e Disorder comes in many shapes and sizes.

 electrons, Anderson models (diagonal and off-diagonal);
“real” disorder from topologically disordered network.

« vibrations “Substitutional”; Force constant disorder on a
FCC lattice; Topological disorder (a-silica) with long-
range (Coulomb) interactions; (a-S1)10,000 atom

The qualitative nature of the localized-
extended transition 1s similar for all these
systems.

Ludlam, Taraskin, Elliott, DAD — JPCM 17 L321 (2005).



Do the correlations 1n matrix
elements matter?

* The Anderson model gets all the qualitative
features right: 1slands, resonant mixing etc.
around spectral gaps.

* But not the fine but important details
around the band edges.

Yes — the correlations matter.



II. The Urbach tail problem

« Urbach! noted exponential (not Gaussian) tails in optical
absorption for impure crystals in 1953:

a(w) o exp|(hw — hwo)/ Eo
w: photon frequency, w, and E, fitting parameters
It 1s ubiquitous (particularly in systems with disorder).

* Venerable problem — various 1deas: Halperin-Lax, Morrell
Cohen et al, Dow-Redfield... Very different models.

e This has been carefully studied in amorphous Si.
Exponential tails measured separately for each band edge?.

IF. Urbach, PR 92 1324 (1953)
2S. Aljishi et al., PRL 64 2811 (1990)



Preliminary: Defective xtal and
1on-bombarded dlamond Sl

« Experiment!: ion-damaged
diamond exhibits an
exponential tail.

« Simulation?: SIESTA relaxed
di-vacancy in 512-atom cell
forms exponential tail.

« Relaxing di-vacancy yields
strain field involving many
atoms. The beginning of the
Urbach tail?

IS. Sundari, Nuc. Inst. Meth. B 215 157 (2004)
%Y. Pan, F. Inam, M. Zhang, DAD, PRL 100 206403 (2008)
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Density of states: large
amorphous S1 model

 Model: Barkema and Mousseau WWW-
type: 100,000 atoms. Excellent RDF,
fourfold, tetrahedral with little strain.

* Hamiltonian: Kwon et al. orthogonal tight-

binding model, maximum entropy tricks to
compute the DOS (ask me...)

G. Barkema and N Mousseau, PRB 62 4985 (2000)
DAD and O. F. Sankey, PRL 70 3631 (1993); DAD EPJB 68 1 (2009); K. Bandypoadhyay et a/, PRE 71 057701 (2005)
I[. Kwon et al, PRB 49 7242 (1994)



Density of states: reconstruction
from moments
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E. T. Jaynes, Probability Theory: The Logic of Science, CUP (2003); DAD and O. F. Sankey, PRL 70 3631 (1993).



Result: exponential tails 1n a-Si

003
—— EDOS 100k-atom 107 moments
—— Valence tail fitting
Conduction tail fitting
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E) o exn(—|E — Ev|/Ey) Euz=200 meV (valence)
p( ) p( | bl/ U) E=96 meV (conduction)



Discussion

* The models include whatever structures “cause”
the exponential tails.

o conduction tail: due to 1-D filaments of long
bonds.

o valence tail: due to 3-D clusters of short bonds
‘nucleated’ by a particularly short bond.

Y. Pan, F. Inam, M. Zhang and DAD, PRL 100 206403 (2008).



Tail states
Bondlength decomposition as function of energy

E¢
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B B — Phys. Rev. B 58 15624 (1998)
il - 5 z J. Non. Cryst. Sol. 354 3480 (2008)
Energy (eV)

Messages: 1) valence tail from short; 2) conduction from long;
3) Defects add ‘noise’ — but the pattern is evident nevertheless; 4)
Note the symmetry in B(E) about E;, especially for M,.



Blobs and filaments: valence

states
A oy o e
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Valence tail: connected blobs and filaments

Other blobs and filaments: Lyman
o emisson from a giant galaxy
‘string” . Paul Francis, ANU,
2004

Blobs and filaments in solids, not space:
J. Dong & DAD PRL 80 1928 (1998)

J. Ludlam, S. R. Elliott, S. N. Taraskin &
DAD JPCM 17 L321 (2005)



a-Silica

Short R cluster

» Silica tails: small 0. g;
(valence), large Og; o.g;
(conduction). Long B,

F. Inam, J. Lewis, DAD PSS(a) 207 599 (2010)



Conclusion: Urbach tails

« Shorter bond ‘nuclei’ create clusters of connected short bonds; local
densification. Long bonds, wispy filaments.

e Short bonds: valence tail, long bonds: conduction tail.

* QOur models are too small to accurately compute fractal dimension D
but we surely have:

Filaments: D near 1 on the conduction side
Clusters: D significantly higher than for the valence side

We link such electronic information to the connectivity/structure of
the network. D 1s unknown for a real material — and varies

asymmetrically about E;.. [D~1.3 for Anderson model.]

* Some indication of greater generality: silica



III. Locality of QM 1n disordered
solid state

Even for disordered system: almost all eigenstates fill space. Looks like
the force on atom at R requires information from everywhere!

Fbl} = 2 Z (Yn| — VRH|9n,)

n occ

[Here, vy, 1s a Kohn-Sham orbital. ]

Can perturbing the solid 1m away from R really change the force on at
R??? (No! Boys, Kohn, Vanderbilt, Daw...)

22



Density matrix: gauge of
electronic nonlocality

eigenstates

/
p(X,x")=2 D, ¢*(x),(x")

n 0OCC

W. Kohn: Density matrix p 1s localized by destructive wave-mechanical
interference. Principle of Nearsightedness

One might suppose that destructive wave-mechanical interference
should be influenced by structural disorder. Is 1t?

The decay of the density matrix 1s fundamental attribute of the material
(and structure).



p(xx) (1/A%)

Example: Aluminum

p(X,X’)=2(27T)_3J d3ke—ik-(x—xr)
k<kp

_ / =3n[sin(¢)— ¢ cos(£)1/ L3,
=kgx-x’|

n: density of electron gas

0.15

0.05

0.0 25 o }:(OA ) 7.5 10.0 /
N Kohn-Sham

FIG. 4. Contour plot of the real-space density matrix for Al
calculated in the {100} plane for the conventional cubic unit cell
(the x-y axes are parallel to the bonds).

S. N. Taraskin et al., PRB 66 233101 (2002)

Metal: power law decay. Free electron gas gives similar DM
to DFT! Gibbs’ ringing* from cutoff at Ferm1 surface.

*Published by Henry Wilbraham (1848), On a certain periodic function, The Cambridge and Dublin Mathematical Journal 3: 198-201,
Trinity College, when 22 years old, 50 years before Gibbs!



Decay of density matrix in
insulators: analytic approach

Start with centrosymmetric n.n. tight-binding Hamiltonian

Two orbitals per

- ZS#“/L)(;M + Z tulim)(ju']. site,. bonc%’ing and
i i, j (i) antibonding, SC
lattice.

Density matrix 1s integral over Brillouin zone:

( ) B f f elk r;, Sk
P = S (4§ +she

S(k) 1s structure factor, A(k) depends on S and tighs
binding parameters.



D.M. asymptotics (cont’d)

_ (=Y S k) T,
Pr. = Gaprt 2,0 O Gaapn | @+ D%

2 1s a (known) sum, depending on dimensionality D=1,2,3

Sum the series, use Stirling approximation, in 3D get (for
example):

Py, = (—1)7\/ - exp|:—v+(1 + V—_ln(vx/vy))}
27 vy vy 2V 4

Wl o

2d, 3d: S. Taraskin, DAD, Elliott PRL 88 196405 (2002); also 1d: L. He and D. Vanderbilt, PRL 86, 5341 (2001).
26



Realistic calculations (c-S1 and a-

r () r(A)
The same exponential decay, crystal or amorphous!

X. Zhang and DAD, PRB 63 233109 (2001).



Wannier tunctions

 Wannier functions: unitary transformations of
eigenstates localized in real space.

« Not unique, but Vanderbilt showed how to
compute maximally-localized Wannier functions!.

* Long range decay of these 1s similar for ¢-S1 and
a-S1, and similar to decay of density matrix.

* We compute with an O(N) projection method,
results much like MLWFs.

ID. Vanderbilt and coworkers “Maximally-localized WF”, N. Marzari et al, RMP 84 1419 (2012)



Wannier functions for disordered
systems

DAD Eur. Phys. ] B 68 1 (2009)

Diamond
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Conclusion: Locality

We quantify Kohn’s Principle:
(1) Analytically for two-band insulator

(2) By direct calculation of p with Kohn-Sham
orbitals for metals, crystalline and

amorphous semiconductors. Also Wannier
functions from projection.

(3) Topological disorder makes little

qualitative difference, at least for a-Si1 (and
S10,). 20



IV. But what of Localized
Electrons + Phonons

* The electron-phonon coupling gauges how the
electron energies/states change with atomic
deformation.

* Phonon effects near the Fermi level: key to
transport, device applications, theory of
localization.

* We begin with a simple simulation....



Energy eigenvalue (eV)
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Thermal fluctuations of the
Kohn-Sham eigenvalues

Amorphous Si 216

;

Crystal Si 216
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States near gap fluctuate by tenths of eV >> kT !

T=300K, 216
atoms, " point



Sensitivity of electron energy to
particular phonon

Hellmann-Feynman theorem and harmonic
approximation with classical lattice
dynamics leads easily to fluctuations in
electron energy eigenvalue <6A?>:

. T

- : r :SN -—")
. | ' .. 3kp'l =ow)

I"' " 2 .i'l' _— 3 —_— -‘ -2 f ) ~J ll \
0An) = rl—.mi T ,/n WOAn() ~ ( 2M ) Z o2

(o

-‘_-
A T

3N -
. — oH . o
Znlw) = Z":-.‘:”n | IR [Un) Xa(w).

[

We call 2 the electron-phonon coupling



E-P coupling:

S1

Se

a-S1, a-S¢

En() = 2o~ W, | OH/OR > X (@)

Couple electron n (energy E) and phonon w

R. Atta-Fynn, P. Biswas, DAD Electron-phonon
coupling is large for localized states, PRB 69 245204
(2004)

34




Correlation between localization
and thermal fluctuation from MD

<6}\2> L z% oiooo: c

(T>0 property)

Localization (T=0 property)

700K

500K

300K

150K

Fits analytic result for low T



Interpretation

1. Large e-p coupling for localized states near
the gap. Localization amplifies e-p coupling.

2. For localized states, simple algebra' leads
to the conclusion that:

a) Z (w)? [for eigenvalue n] ~ IPR [n]

b) <6A’>> ~ IPR

[PR = inverse participation ration; measure of localization

IAtta-Fynn, Biswas and DAD, PRB 69 254204 (2004)
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